3. TCP
3.1 TCP 报文头
主要字段:
- 序列号:在建立连接时由计算机生成的随机数作为其初始值,通过 SYN 包传给接收端主机,每发送一次数据,就「累加」一次该「数据字节数」的大小。用来解决网络包乱序问题。
- 确认应答号:指下一次「期望」收到的数据的序列号,发送端收到这个确认应答以后可以认为在这个序号以前的数据都已经被正常接收。用来解决丢包的问题。
- 控制位:
- ACK:该位为
1
时,「确认应答」的字段变为有效,TCP 规定除了最初建立连接时的SYN
包之外该位必须设置为1
。 - RST:该位为
1
时,表示 TCP 连接中出现异常必须强制断开连接。 - SYN:该位为
1
时,表示希望建立连接,并在其「序列号」的字段进行序列号初始值的设定。 - FIN:该位为
1
时,表示今后不会再有数据发送,希望断开连接。当通信结束希望断开连接时,通信双方的主机之间就可以相互交换FIN
位为 1 的 TCP 段
- ACK:该位为
3.2 为什么需要 TCP?TCP 工作在那一层?
为什么需要 TCP
IP
层是「不可靠」的,它不保证网络包的交付、不保证网络包的按序交付、也不保证网络包中的数据的完整性。
TCP 工作在那一层
如果需要保障网络数据包的可靠性,那么就需要由上层(传输层)的 TCP
协议来负责。
因为 TCP 是一个工作在传输层的可靠数据传输的服务,它能确保接收端接收的网络包是无损坏、无间隔、非冗余和按序的
3.3 什么是TCP
TCP 是面向连接的、可靠的、基于字节流的传输层通信协议。
- 面向连接:一定是「一对一」才能连接,不能像 UDP 协议可以一个主机同时向多个主机发送消息,也就是一对多是无法做到的;
- 可靠的:无论的网络链路中出现了怎样的链路变化,TCP 都可以保证一个报文一定能够到达接收端;
- 字节流:用户消息通过 TCP 协议传输时,消息可能会被操作系统「分组」成多个的 TCP 报文,如果接收方的程序如果不知道「消息的边界」,是无法读出一个有效的用户消息的。并且 TCP 报文是「有序的」,当「前一个」TCP 报文没有收到的时候,即使它先收到了后面的 TCP 报文,那么也不能扔给应用层去处理,同时对「重复」的 TCP 报文会自动丢弃
3.4 什么是 TCP 连接
Connections: The reliability and flow control mechanisms described above require that TCPs initialize and maintain certain status information for each data stream. The combination of this information, including sockets, sequence numbers, and window sizes, is called a connection.
用于保证可靠性和流量控制维护的某些状态信息,这些信息的组合,包括 Socket、序列号和窗口大小称为连接。
建立一个 TCP 连接是需要客户端与服务端达成上述三个信息的共识
- Socket:由 IP 地址和端口号组成
- 序列号:用来解决乱序问题等
- 窗口大小:用来做流量控制
3.5 如何唯一确定一个 TCP 连接
TCP 四元组可以唯一的确定一个连接,四元组包括如下:
- 源地址
- 源端口
- 目的地址
- 目的端口
3.6 有一个 IP 的服务端监听了一个端口,它的 TCP 的最大连接数是多少?
服务端通常固定在某个本地端口上监听,等待客户端的连接请求。
因此,客户端 IP 和端口是可变的,其理论值计算公式如下:
对 IPv4,客户端的 IP 数最多为 2
的 32
次方,客户端的端口数最多为 2
的 16
次方,也就是服务端单机最大 TCP 连接数,约为 2
的 48
次方。
服务端最大并发 TCP 连接数远不能达到理论上限,会受以下因素影响:
- 文件描述符限制,每个 TCP 连接都是一个文件,如果文件描述符被占满了,会发生 Too many open files。Linux 对可打开的文件描述符的数量分别作了三个方面的限制:
- 系统级:当前系统可打开的最大数量,通过
cat /proc/sys/fs/file-max
查看; - 用户级:指定用户可打开的最大数量,通过
cat /etc/security/limits.conf
查看; - 进程级:单个进程可打开的最大数量,通过
cat /proc/sys/fs/nr_open
查看;
- 系统级:当前系统可打开的最大数量,通过
- 内存限制,每个 TCP 连接都要占用一定内存,操作系统的内存是有限的,如果内存资源被占满后,会发生 OOM
3.7 TCP 和 UDP 的区别,有哪些应用场景
UDP
DP 不提供复杂的控制机制,利用 IP 提供面向「无连接」的通信服务。
UDP 头部只有 8
个字节(64 位),UDP 的头部格式如下:
- 目标和源端口:主要是告诉 UDP 协议应该把报文发给哪个进程。
- 包长度:该字段保存了 UDP 首部的长度跟数据的长度之和。
- 校验和:校验和是为了提供可靠的 UDP 首部和数据而设计,防止收到在网络传输中受损的 UDP 包。
区别
1. 连接
- TCP 是面向连接的传输层协议,传输数据前先要建立连接。
- UDP 是不需要连接,即刻传输数据。
2. 服务对象
- TCP 是一对一的两点服务,即一条连接只有两个端点。
- UDP 支持一对一、一对多、多对多的交互通信
3. 可靠性
- TCP 是可靠交付数据的,数据可以无差错、不丢失、不重复、按序到达。
- UDP 是尽最大努力交付,不保证可靠交付数据。但是可以基于 UDP 传输协议实现一个可靠的传输协议,比如 QUIC 协议
4. 拥塞控制、流量控制
- TCP 有拥塞控制和流量控制机制,保证数据传输的安全性。
- UDP 则没有,即使网络非常拥堵了,也不会影响 UDP 的发送速率
5. 首部开销
- TCP 首部长度较长,会有一定的开销,首部在没有使用「选项」字段时是
20
个字节,如果使用了「选项」字段则会变长的。 - UDP 首部只有 8 个字节,并且是固定不变的,开销较小
6. 传输方式
- TCP 是流式传输,没有边界,但保证顺序和可靠。
- UDP 是一个包一个包的发送,是有边界的,但可能会丢包和乱序
7. 分片不同
- TCP 的数据大小如果大于 MSS 大小,则会在传输层进行分片,目标主机收到后,也同样在传输层组装 TCP 数据包,如果中途丢失了一个分片,只需要传输丢失的这个分片
- UDP 的数据大小如果大于 MTU 大小,则会在 IP 层进行分片,目标主机收到后,在 IP 层组装完数据,接着再传给传输层
应用场景
TCP 是面向连接,能保证数据的可靠性交付,因此经常用于:
FTP
文件传输;- HTTP / HTTPS;
UDP 面向无连接,它可以随时发送数据,再加上 UDP 本身的处理既简单又高效,因此经常用于:
- 包总量较少的通信,如
DNS
、SNMP
等; - 视频、音频等多媒体通信;
- 广播通信;
3.8 TCP 和 UDP 可以使用同一个端口吗
可以的
传输层的「端口号」的作用,是为了区分同一个主机上不同应用程序的数据包。
传输层有两个传输协议分别是 TCP 和 UDP,在内核中是两个完全独立的软件模块。
当主机收到数据包后,可以在 IP 包头的「协议号」字段知道该数据包是 TCP/UDP,所以可以根据这个信息确定送给哪个模块(TCP/UDP)处理,送给 TCP/UDP 模块的报文根据「端口号」确定送给哪个应用程序处理。
TCP/UDP 各自的端口号也相互独立,如 TCP 有一个 80 号端口,UDP 也可以有一个 80 号端口,二者并不冲突。
3.9 TCP 连接建立过程 - 三次握手
- 服务器监听端口,进入 LINSTEN 状态
- 客户端随机初始化序列号
client_isn
,SYN
置1,表示报文为SYN
报文。发送后,客户端进入SYN-SENT
同步已发送状态。 - 服务端收到
SYN
报文后,初始化服务端序列号server_isn
,确认应答号ack = client_isn+1
,设置SYN
和ACK
为 1。发送至客户端,服务端进入SYN-RCVD
同步已接收状态 - 客户端接收报文后,发送最后一次应答报文。ACK 为 1,确认应答号
ack = server_isn + 1
。发送后进入 ESTABLISHED 状态 - 服务端接收到报文后进入,ESTABLISHED 状态
tips:第三次握手是可以携带数据的,前两次握手是不可以携带数据的
3.10 为什么是三次握手
- 三次握手才可以阻止重复历史连接的初始化(主要原因)
- 三次握手才可以同步双方的初始序列号
- 三次握手才可以避免资源浪费
原因一:避免历史连接
RFC 793 指出的 TCP 连接使用三次握手的首要原因:
The principle reason for the three-way handshake is to prevent old duplicate connection initiations from causing confusion.
三次握手的首要原因是为了防止旧的重复连接初始化造成混乱。
考虑一个场景,客户端先发送了 SYN(seq = 90)报文,然后客户端宕机了,而且这个 SYN 报文还被网络阻塞了,服务端并没有收到,接着客户端重启后,又重新向服务端建立连接,发送了 SYN(seq = 100)报文(注意!不是重传 SYN,重传的 SYN 的序列号是一样的)。
看看三次握手是如何阻止历史连接的:
客户端连续发送多次 SYN(都是同一个四元组)建立连接的报文,在网络拥堵情况下:
- 一个「旧 SYN 报文」比「最新的 SYN」 报文早到达了服务端,那么此时服务端就会回一个
SYN + ACK
报文给客户端,此报文中的确认号是 91(90+1)。 - 客户端收到后,发现自己期望收到的确认号应该是 100 + 1,而不是 90 + 1,于是就会回 RST 报文。
- 服务端收到 RST 报文后,就会释放连接。
- 后续最新的 SYN 抵达了服务端后,客户端与服务端就可以正常的完成三次握手了。
上述中的「旧 SYN 报文」称为历史连接,TCP 使用三次握手建立连接的最主要原因就是防止「历史连接」初始化了连接。
如果采用两次握手建立 TCP 连接的场景下,服务端在向客户端发送数据前,并没有阻止掉历史连接,导致服务端建立了一个历史连接,又白白发送了数据,妥妥地浪费了服务端的资源。
因此,要解决这种现象,最好就是在服务端发送数据前,也就是建立连接之前,要阻止掉历史连接,这样就不会造成资源浪费,而要实现这个功能,就需要三次握手。
原因二:同步双方初始序列号
TCP 协议的通信双方, 都必须维护一个「序列号」, 序列号是可靠传输的一个关键因素,它的作用:
- 接收方可以去除重复的数据;
- 接收方可以根据数据包的序列号按序接收;
- 可以标识发送出去的数据包中, 哪些是已经被对方收到的(通过 ACK 报文中的序列号知道);
序列号在 TCP 连接中占据着非常重要的作用,所以当客户端发送携带「初始序列号」的 SYN
报文的时候,需要服务端回一个 ACK
应答报文,表示客户端的 SYN 报文已被服务端成功接收,那当服务端发送「初始序列号」给客户端的时候,依然也要得到客户端的应答回应,这样一来一回,才能确保双方的初始序列号能被可靠的同步。
两次握手只保证了一方的初始序列号能被对方成功接收,没办法保证双方的初始序列号都能被确认接收。
原因三:避免资源浪费
如果只有「两次握手」,当客户端发生的 SYN
报文在网络中阻塞,客户端没有接收到 ACK
报文,就会重新发送 SYN
,由于没有第三次握手,服务端不清楚客户端是否收到了自己回复的 ACK
报文,所以服务端每收到一个 SYN
就只能先主动建立一个连接。
如果客户端发送的 SYN
报文在网络中阻塞了,重复发送多次 SYN
报文,那么服务端在收到请求后就会建立多个冗余的无效链接,造成不必要的资源浪费。
小结
通过三次握手能防止历史连接的建立,能减少双方不必要的资源开销,能帮助双方同步初始化序列号。序列号能够保证数据包不重复、不丢弃和按序传输。
3.11 为何每次建立的 TCP 连接,初始化的序列号要求都不一样
主要原因有两个方面:
- 为了防止历史报文被下一个相同四元组的连接接收(主要方面);
- 为了安全性,防止黑客伪造的相同序列号的 TCP 报文被对方接收;
阻止接收历史报文
假设每次建立连接,客户端和服务端的初始化序列号都是从 0 开始:
- 客户端和服务端建立一个 TCP 连接,在客户端发送数据包被网络阻塞了,然后超时重传了这个数据包,而此时服务端设备断电重启了,之前与客户端建立的连接就消失了,于是在收到客户端的数据包的时候就会发送 RST 报文。
- 紧接着,客户端又与服务端建立了与上一个连接相同四元组的连接;
- 在新连接建立完成后,上一个连接中被网络阻塞的数据包正好抵达了服务端,刚好该数据包的序列号正好是在服务端的接收窗口内,所以该数据包会被服务端正常接收,就会造成数据错乱。
如果每次建立连接,客户端和服务端的初始化序列号都是一样的话,很容易出现历史报文被下一个相同四元组的连接接收的问题。
每次初始化序列号不一样很大程度上能够避免历史报文被下一个相同四元组的连接接收,注意是很大程度上,并不是完全避免了(因为序列号会有回绕的问题,所以需要用时间戳的机制来判断历史报文。
3.12 初始序列号如何产生
RFC793 提到初始化序列号 ISN 随机生成算法:ISN = M + F(localhost, localport, remotehost, remoteport)。
M
是一个计时器,这个计时器每隔 4 微秒加 1。F
是一个 Hash 算法,根据源 IP、目的 IP、源端口、目的端口生成一个随机数值。要保证 Hash 算法不能被外部轻易推算得出,用 MD5 算法是一个比较好的选择。
可以看到,随机数是会基于时钟计时器递增的,基本不可能会随机成一样的初始化序列号
3.13 MSS 和 MTU
MTU
:一个网络包的最大长度,以太网中一般为1500
字节;MSS
:除去 IP 和 TCP 头部之后,一个网络包所能容纳的 TCP 数据的最大长度;
3.14 为何要在 TCP 层分片,而不是在 IP 层分片
因为 IP 层本身没有超时重传机制,它由传输层的 TCP 来负责超时和重传。那么当如果一个 IP 分片丢失,整个 IP 报文的所有分片都得重传。
当某一个 IP 分片丢失后,接收方的 IP 层就无法组装成一个完整的 TCP 报文(头部 + 数据),也就无法将数据报文送到 TCP 层,所以接收方不会响应 ACK 给发送方,因为发送方迟迟收不到 ACK 确认报文,所以会触发超时重传,就会重发「整个 TCP 报文(头部 + 数据)」。
所以,为了达到最佳的传输效能 TCP 协议在建立连接的时候通常要协商双方的 MSS 值,当 TCP 层发现数据超过 MSS 时,则就先会进行分片,当然由它形成的 IP 包的长度也就不会大于 MTU ,自然也就不用 IP 分片了。
经过 TCP 层分片后,如果一个 TCP 分片丢失后,进行重发时也是以 MSS 为单位,而不用重传所有的分片,大大增加了重传的效率
3.15 当第一次握手丢失之后会发生什么
客户端发送SYN
报文之后,进入SYN-SENT
状态,若一直收不到SYN-ACK
报文(第二次握手),则触发超时重传,重新发送一次,重发的报文和之前一样。
不同版本的操作系统中超时时间不同,一般为 1 秒或 3 秒。
Linux 中,客户端的 SYN 报文重传次数由tcp_syn_retries
控制,该参数可以自定义。
# cat /proc/sys/net/ipv4/tcp_syn_retries
5
通常,第一次超时重传是在 1 秒后,第二次超时重传是在 2 秒,第三次超时重传是在 4 秒后,第四次超时重传是在 8 秒后,第五次是在超时重传 16 秒后。没错,每次超时的时间是上一次的 2 倍。
举个例子,假设 tcp_syn_retries 参数值为 3,那么当客户端的 SYN 报文一直在网络中丢失时,会发生下图的过程:
- 当客户端超时重传 3 次 SYN 报文后,由于 tcp_syn_retries 为 3,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到服务端的第二次握手(SYN-ACK 报文),那么客户端就会断开连接。
3.16 第二次握手报文丢失会发生什么
当服务端收到客户端的第一次握手后,就会回 SYN-ACK 报文给客户端,这个就是第二次握手,此时服务端会进入 SYN_RCVD
状态。
第二次握手的 SYN-ACK
报文其实有两个目的 :
- 第二次握手里的 ACK, 是对第一次握手的确认报文;
- 第二次握手里的 SYN,是服务端发起建立 TCP 连接的报文;
那么当第二次握手报文丢失时:
- 客户端会重传 SYN 报文,也就是第一次握手,最大重传次数由
tcp_syn_retries
内核参数决定; - 服务端会重传 SYN-ACK 报文,也就是第二次握手,最大重传次数由
tcp_synack_retries
内核参数决定。
3.17 第三次握手丢失会发生什么
因为这个第三次握手的 ACK 是对第二次握手的 SYN 的确认报文,所以当第三次握手丢失了,服务端那一方迟迟收不到这个确认报文,就会触发超时重传机制,重传 SYN-ACK 报文,直到收到第三次握手,或者达到最大重传次数。
客户端的 ACK 报文(第三次握手)不会重传,而是服务端重传 SYN-ACK
(第二次握手)报文。
3.17 什么是 SYN 攻击?如何避免
攻击者短时间伪造不同 IP 地址的 SYN
报文,服务端每接收到一个 SYN
报文,就进入SYN_RCVD
状态,但服务端发送出去的 ACK + SYN
报文,无法得到未知 IP 主机的 ACK
应答,久而久之就会占满服务端的半连接队列,使得服务端不能为正常用户服务。
半连接 和 全连接 队列
在 TCP 三次握手的时候,Linux 内核会维护两个队列,分别是:
- 半连接队列,也称 SYN 队列;
- 全连接队列,也称 accept 队列;
- 当服务端接收到客户端的 SYN 报文时,会创建一个半连接的对象,然后将其加入到内核的「 SYN 队列」;
- 接着发送 SYN + ACK 给客户端,等待客户端回应 ACK 报文;
- 服务端接收到 ACK 报文后,从「 SYN 队列」取出一个半连接对象,然后创建一个新的连接对象放入到「 Accept 队列」;
- 应用通过调用
accpet()
socket 接口,从「 Accept 队列」取出连接对象。
不管是半连接队列还是全连接队列,都有最大长度限制,超过限制时,默认情况都会丢弃报文。
如何避免
SYN 攻击方式最直接的表现就会把 TCP 半连接队列打满,这样当 TCP 半连接队列满了,后续再在收到 SYN 报文就会丢弃,导致客户端无法和服务端建立连接。
调大 netdev_max_backlog; 当网卡接收数据包的速度大于内核处理的速度时,会有一个队列保存这些数据包。控制该队列的最大值如下参数,默认值是 1000,我们要适当调大该参数的值,比如设置为 10000:
增大 TCP 半连接队列;
要同时增大下面这三个参数:
- 增大 net.ipv4.tcp_max_syn_backlog
- 增大 listen() 函数中的 backlog
- 增大 net.core.somaxconn
开启 tcp_syncookies;
- 0 值,表示关闭该功能;
- 1 值,表示仅当 SYN 半连接队列放不下时,再启用它;
- 2 值,表示无条件开启功能;
开启 syncookies 功能就可以在不使用 SYN 半连接队列的情况下成功建立连接,相当于绕过了 SYN 半连接来建立连接。
- 当 「 SYN 队列」满之后,后续服务端收到 SYN 包,不会丢弃,而是根据算法,计算出一个
cookie
值; - 将 cookie 值放到第二次握手报文的「序列号」里,然后服务端回第二次握手给客户端;
- 服务端接收到客户端的应答报文时,服务端会检查这个 ACK 包的合法性。如果合法,将该连接对象放入到「 Accept 队列」。
- 最后应用程序通过调用
accpet()
接口,从「 Accept 队列」取出的连接。
减少 SYN+ACK 重传次数
当服务端受到 SYN 攻击时,就会有大量处于 SYN_REVC 状态的 TCP 连接,处于这个状态的 TCP 会重传 SYN+ACK ,当重传超过次数达到上限后,就会断开连接。
那么针对 SYN 攻击的场景,我们可以减少 SYN-ACK 的重传次数,以加快处于 SYN_REVC 状态的 TCP 连接断开。
SYN-ACK 报文的最大重传次数由
tcp_synack_retries
内核参数决定(默认值是 5 次),比如将 tcp_synack_retries 减少到 2 次:$ echo 2 > /proc/sys/net/ipv4/tcp_synack_retries
3.18 四次挥手
- 客户端准备关闭连接,将
FIN
置 1 表示发送FIN
报文,客户端进入FIN_WAIT_1
状态。 - 服务端收到
FIN
报文,向客户端发送ACK
应答报文,服务端进入CLOSE_WAIT
状态 - 客户端收到
ACK
报文,进入FIN_WAIT_2
状态 - 等待服务端处理完数据之后,向客户端发送
FIN
报文,进入LAST_ACK
状态 - 客户端收到
FIN
报文之后,回应ACK
报文,进入TIME_WAIT
状态 - 服务端收到
ACK
之后,进入CLOSE
状态,此时服务端关闭 - 客户端等待
2*MSL
时间之后,进入CLOSE
状态,客户端关闭
注意:只有客户端主动关闭才会进入TIME_WAIT
状态
3.19 为什么需要四次挥手
- 关闭连接时,客户端向服务端发送
FIN
时,仅仅表示客户端不再发送数据了但是还能接收数据。 - 服务端收到客户端的
FIN
报文时,先回一个ACK
应答报文,而服务端可能还有数据需要处理和发送,等服务端不再发送数据时,才发送FIN
报文给客户端来表示同意现在关闭连接。
3.20 为什么 TIME_WAIT 时间为 2*MSL
MSL 和 TTL
MSL(Maximum Segment Lifetime),报文最大生存时间,是任何报文在网络中存在的最长时间,超过此时间的报文将被丢弃。
因为 TCP 是基于 IP 协议,IP 头中有一个 TTL
字段,是 IP 数据报可以经过的最大路由数,每经过一个处理他的路由器此值就减 1,当此值为 0 则数据报将被丢弃,同时发送 ICMP 报文通知源主机。
MSL 与 TTL 的区别: MSL 的单位是时间,而 TTL 是经过路由跳数。所以 MSL 应该要大于等于 TTL 消耗为 0 的时间,以确保报文已被自然消亡。
TTL 的值一般是 64,Linux 将 MSL 设置为 30 秒,意味着 Linux 认为数据报文经过 64 个路由器的时间不会超过 30 秒,如果超过了,就认为报文已经消失在网络中了。
为什么是 2 倍 MSL
网络中可能存在来自发送方的数据包,当这些发送方的数据包被接收方处理后又会向对方发送响应,所以一来一回需要等待 2 倍的时间。
2MSL
的时间是从客户端接收到 FIN 后发送 ACK 开始计时的。如果在 TIME-WAIT 时间内,因为客户端的 ACK 没有传输到服务端,客户端又接收到了服务端重发的 FIN 报文,那么 2MSL 时间将重新计时。
在 Linux 系统里 2MSL
默认是 60
秒,那么一个 MSL
也就是 30
秒。Linux 系统停留在 TIME_WAIT 的时间为固定的 60 秒。
其定义在 Linux 内核代码里的名称为 TCP_TIMEWAIT_LEN:
#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
state, about 60 seconds */
如果要修改 TIME_WAIT 的时间长度,只能修改 Linux 内核代码里 TCP_TIMEWAIT_LEN 的值,并重新编译 Linux 内核
3.21 若第一次挥手丢失,会发生什么
如果第一次挥手丢失了,那么客户端迟迟收不到被动方的 ACK 的话,也就会触发超时重传机制,重传 FIN 报文,重发次数由 tcp_orphan_retries
参数控制。
当客户端重传 FIN 报文的次数超过 tcp_orphan_retries
后,就不再发送 FIN 报文,则会在等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到第二次挥手,那么直接进入到 close
状态。
3.22 第二次挥手丢失了,会发生什么
ACK 报文是不会重传的,所以如果服务端的第二次挥手丢失了,客户端就会触发超时重传机制,重传 FIN 报文,直到收到服务端的第二次挥手,或者达到最大的重传次数。
3.23 第三次挥手丢失了,会发生什么
若第三次挥手丢失,就会迟迟收不到这个 ACK,服务端就会重发 FIN 报文,重发次数仍然由 tcp_orphan_retrie
s 参数控制,这与客户端重发 FIN 报文的重传次数控制方式是一样的。
若达到了重传最大次数,就再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第四次挥手(ACK报文),那么服务端就会断开连接。
3.24 第四次挥手丢失了,会发生什么
如果第四次挥手的 ACK 报文没有到达服务端,服务端就会重发 FIN 报文,重发次数仍然由tcp_orphan_retries
参数控制。
若达到了重传最大次数,就再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第四次挥手(ACK报文),那么服务端就会断开连接。
3.25 为什么需要 TIME_WAIT 状态
主动发起关闭连接的一方,才会有 TIME-WAIT
状态。
主要是两个原因:
- 防止历史连接中的数据,被后面相同四元组的连接错误的接收;
- 保证「被动关闭连接」的一方,能被正确的关闭;
原因一:防止历史连接中的数据,被后面相同四元组的连接错误的接收
序列号(SEQ)和初始序列号(ISN)。
- 序列号,是 TCP 一个头部字段,标识了 TCP 发送端到 TCP 接收端的数据流的一个字节,因为 TCP 是面向字节流的可靠协议,为了保证消息的顺序性和可靠性,TCP 为每个传输方向上的每个字节都赋予了一个编号,以便于传输成功后确认、丢失后重传以及在接收端保证不会乱序。序列号是一个 32 位的无符号数,因此在到达 4G 之后再循环回到 0。
- 初始序列号,在 TCP 建立连接的时候,客户端和服务端都会各自生成一个初始序列号,它是基于时钟生成的一个随机数,来保证每个连接都拥有不同的初始序列号。初始化序列号可被视为一个 32 位的计数器,该计数器的数值每 4 微秒加 1,循环一次需要 4.55 小时。
序列号和初始化序列号并不是无限递增的,会发生回绕为初始值的情况,这意味着无法根据序列号来判断新老数据。
如果没有 TIME_WAIT 或者 TIME_WAIT 时间过短:
为了防止历史连接中的数据,被后面相同四元组的连接错误的接收,因此 TCP 设计了 TIME_WAIT 状态,状态会持续 2MSL
时长,这个时间足以让两个方向上的数据包都被丢弃,使得原来连接的数据包在网络中都自然消失,再出现的数据包一定都是新建立连接所产生的。
原因二:保证「被动关闭连接」的一方,能被正确的关闭
在 RFC 793 指出 TIME-WAIT 另一个重要的作用是:
TIME-WAIT - represents waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request.
也就是说,TIME-WAIT 作用是等待足够的时间以确保最后的 ACK 能让被动关闭方接收,从而帮助其正常关闭。
如果客户端(主动关闭方)最后一次 ACK 报文(第四次挥手)在网络中丢失了,那么按照 TCP 可靠性原则,服务端(被动关闭方)会重发 FIN 报文。
假设客户端没有 TIME_WAIT 状态,而是在发完最后一次回 ACK 报文就直接进入 CLOSE 状态,如果该 ACK 报文丢失了,服务端则重传的 FIN 报文,而这时客户端已经进入到关闭状态了,在收到服务端重传的 FIN 报文后,就会回 RST 报文。
服务端收到这个 RST 并将其解释为一个错误(Connection reset by peer),这对于一个可靠的协议来说不是一个优雅的终止方式。
为了防止这种情况出现,客户端必须等待足够长的时间,确保服务端能够收到 ACK,如果服务端没有收到 ACK,那么就会触发 TCP 重传机制,服务端会重新发送一个 FIN,这样一去一来刚好两个 MSL 的时间。
客户端在收到服务端重传的 FIN 报文时,TIME_WAIT 状态的等待时间,会重置回 2MSL
3.26 TIME_WAIT 过多的危害
过多的 TIME-WAIT 状态主要的危害有两种:
- 第一是占用系统资源,比如文件描述符、内存资源、CPU 资源、线程资源等;
- 第二是占用端口资源,端口资源也是有限的,一般可以开启的端口为
32768~61000
,也可以通过net.ipv4.ip_local_port_range
参数指定范围。
3.27 TCP 重传机制
TCP 实现可靠传输的方式之一,是通过序列号与确认应答。
在 TCP 中,当发送端的数据到达接收主机时,接收端主机会返回一个确认应答消息,表示已收到消息。
所以 TCP 针对数据包丢失的情况,会用重传机制解决:
- 超时重传
- 快速重传
- SACK
- D-SACK
超时重传
在发送数据时,设定一个定时器,当超过指定的时间后,没有收到对方的 ACK
确认应答报文,就会重发该数据,也就是我们常说的超时重传。
TCP 会在以下两种情况发生超时重传:
- 数据包丢失
- 确认应答丢失
超时时间
RTT
指的是数据发送时刻到接收到确认的时刻的差值,也就是包的往返时间。
超时重传时间是以 RTO
(Retransmission Timeout 超时重传时间)表示。
两种超时时间不同的情况:
- 当超时时间 RTO 较大时,重发就慢,丢了老半天才重发,没有效率,性能差;
- 当超时时间 RTO 较小时,会导致可能并没有丢就重发,于是重发的就快,会增加网络拥塞,导致更多的超时,更多的超时导致更多的重发。
精确的测量超时时间 RTO
的值是非常重要的,这可让我们的重传机制更高效,所以超时重传时间 RTO 的值应该略大于报文往返 RTT 的值。
快速重传
TCP 还有另外一种快速重传(Fast Retransmit)机制,它不以时间为驱动,而是以数据驱动重传。
在上图,发送方发出了 1,2,3,4,5 份数据:
- 第一份 Seq1 先送到了,于是就 Ack 回 2;
- 结果 Seq2 因为某些原因没收到,Seq3 到达了,于是还是 Ack 回 2;
- 后面的 Seq4 和 Seq5 都到了,但还是 Ack 回 2,因为 Seq2 还是没有收到;
- 发送端收到了三个 Ack = 2 的确认,知道了 Seq2 还没有收到,就会在定时器过期之前,重传丢失的 Seq2。
- 最后,收到了 Seq2,此时因为 Seq3,Seq4,Seq5 都收到了,于是 Ack 回 6
快速重传的工作方式是当收到三个相同的 ACK 报文时,会在定时器过期之前,重传丢失的报文段。
快速重传机制只解决了一个问题,就是超时时间的问题,但是它依然面临着另外一个问题。就是重传的时候,是重传一个,还是重传所有的问题。
SACK 方法
SACK
( Selective Acknowledgment), 选择性确认。这种方式需要在 TCP 头部「选项」字段里加一个 SACK
的东西,它可以将已收到的数据的信息发送给「发送方」,这样发送方就可以知道哪些数据收到了,哪些数据没收到,知道了这些信息,就可以只重传丢失的数据。
如下图,发送方收到了三次同样的 ACK 确认报文,于是就会触发快速重发机制,通过 SACK
信息发现只有 200~299
这段数据丢失,则重发时,就只选择了这个 TCP 段进行重复。
如果要支持 SACK
,必须双方都要支持。在 Linux 下,可以通过 net.ipv4.tcp_sack
参数打开这个功能(Linux 2.4 后默认打开)
Duplicate SACK
Duplicate SACK 又称 D-SACK
,其主要使用了 SACK 来告诉「发送方」有哪些数据被重复接收了。
- 「接收方」发给「发送方」的两个 ACK 确认应答都丢失了,所以发送方超时后,重传第一个数据包(3000 ~ 3499)
- 于是「接收方」发现数据是重复收到的,于是回了一个 SACK = 3000~3500,告诉「发送方」 3000~3500 的数据早已被接收了,因为 ACK 都到了 4000 了,已经意味着 4000 之前的所有数据都已收到,所以这个 SACK 就代表着
D-SACK
。 - 这样「发送方」就知道了,数据没有丢,是「接收方」的 ACK 确认报文丢了。
- 数据包(1000~1499) 被网络延迟了,导致「发送方」没有收到 Ack 1500 的确认报文。
- 而后面报文到达的三个相同的 ACK 确认报文,就触发了快速重传机制,但是在重传后,被延迟的数据包(1000~1499)又到了「接收方」;
- 所以「接收方」回了一个 SACK=1000~1500,因为 ACK 已经到了 3000,所以这个 SACK 是 D-SACK,表示收到了重复的包。
- 这样发送方就知道快速重传触发的原因不是发出去的包丢了,也不是因为回应的 ACK 包丢了,而是因为网络延迟了。
D-SACK
有这么几个好处:
- 可以让「发送方」知道,是发出去的包丢了,还是接收方回应的 ACK 包丢了;
- 可以知道是不是「发送方」的数据包被网络延迟了;
- 可以知道网络中是不是把「发送方」的数据包给复制了;
在 Linux 下可以通过 net.ipv4.tcp_dsack
参数开启/关闭这个功能(Linux 2.4 后默认打开)
3.28 TCP 滑动窗口
窗口的实现实际上是操作系统开辟的一个缓存空间,发送方主机在等到确认应答返回之前,必须在缓冲区中保留已发送的数据。如果按期收到确认应答,此时数据就可以从缓存区清除。
假设窗口大小为 3
个 TCP 段,那么发送方就可以「连续发送」 3
个 TCP 段,并且中途若有 ACK 丢失,可以通过「下一个确认应答进行确认」。如下图:
图中的 ACK 600 确认应答报文丢失,也没关系,因为可以通过下一个确认应答进行确认,只要发送方收到了 ACK 700 确认应答,就意味着 700 之前的所有数据「接收方」都收到了。这个模式就叫累计确认或者累计应答。
如何决定窗口大小
TCP 头里有一个字段叫 Window
,也就是窗口大小。
这个字段是接收端告诉发送端自己还有多少缓冲区可以接收数据。于是发送端就可以根据这个接收端的处理能力来发送数据,而不会导致接收端处理不过来。
所以,通常窗口的大小是由接收方的窗口大小来决定的。发送方发送的数据大小不能超过接收方的窗口大小,否则接收方就无法正常接收到数据。
发送方的滑动窗口
下图就是发送方缓存的数据,根据处理的情况分成四个部分,其中深蓝色方框是发送窗口,紫色方框是可用窗口:
- #1 是已发送并收到 ACK确认的数据:1~31 字节
- #2 是已发送但未收到 ACK确认的数据:32~45 字节
- #3 是未发送但总大小在接收方处理范围内(接收方还有空间):46~51字节
- #4 是未发送但总大小超过接收方处理范围(接收方没有空间):52字节以后
当发送方把数据「全部」都一下发送出去后,可用窗口的大小就为 0 了,表明可用窗口耗尽,在没收到 ACK 确认之前是无法继续发送数据了。
当收到之前发送的数据 32~36
字节的 ACK 确认应答后,如果发送窗口的大小没有变化,则滑动窗口往右边移动 5 个字节,因为有 5 个字节的数据被应答确认,接下来 52~56
字节又变成了可用窗口,那么后续也就可以发送 52~56
这 5 个字节的数据了。
如何实现
TCP 滑动窗口方案使用三个指针来跟踪在四个传输类别中的每一个类别中的字节。其中两个指针是绝对指针(指特定的序列号),一个是相对指针(需要做偏移)。
SND.WND
:表示发送窗口的大小(大小是由接收方指定的);SND.UNA
(Send Unacknoleged):是一个绝对指针,它指向的是已发送但未收到确认的第一个字节的序列号,也就是 #2 的第一个字节。SND.NXT
:也是一个绝对指针,它指向未发送但可发送范围的第一个字节的序列号,也就是 #3 的第一个字节。- 指向 #4 的第一个字节是个相对指针,它需要
SND.UNA
指针加上SND.WND
大小的偏移量,就可以指向 #4 的第一个字节了。
那么可用窗口大小的计算就可以是:
可用窗口大小 = SND.WND -(SND.NXT - SND.UNA)
接收方滑动窗口
接收窗口相对简单一些,根据处理的情况划分成三个部分:
- #1 + #2 是已成功接收并确认的数据(等待应用进程读取);
- #3 是未收到数据但可以接收的数据;
- #4 未收到数据并不可以接收的数据;
其中三个接收部分,使用两个指针进行划分:
RCV.WND
:表示接收窗口的大小,它会通告给发送方。RCV.NXT
:是一个指针,它指向期望从发送方发送来的下一个数据字节的序列号,也就是 #3 的第一个字节。- 指向 #4 的第一个字节是个相对指针,它需要
RCV.NXT
指针加上RCV.WND
大小的偏移量,就可以指向 #4 的第一个字节了。
接收窗口和发送窗口的大小是相等的吗
并不是完全相等,接收窗口的大小是约等于发送窗口的大小的。
因为滑动窗口并不是一成不变的。比如,当接收方的应用进程读取数据的速度非常快的话,这样的话接收窗口可以很快的就空缺出来。那么新的接收窗口大小,是通过 TCP 报文中的 Windows 字段来告诉发送方。那么这个传输过程是存在时延的,所以接收窗口和发送窗口是约等于的关系
3.29 TCP 流量控制
TCP 提供一种机制可以让「发送方」根据「接收方」的实际接收能力控制发送的数据量,这就是所谓的流量控制。
假设以下场景:
- 客户端是接收方,服务端是发送方
- 假设接收窗口和发送窗口相同,都为
200
- 假设两个设备在整个传输过程中都保持相同的窗口大小,不受外界影响
根据上图的流量控制,说明下每个过程:
- 客户端向服务端发送请求数据报文。这里要说明下,本次例子是把服务端作为发送方,所以没有画出服务端的接收窗口。
- 服务端收到请求报文后,发送确认报文和 80 字节的数据,于是可用窗口
Usable
减少为 120 字节,同时SND.NXT
指针也向右偏移 80 字节后,指向 321,这意味着下次发送数据的时候,序列号是 321。 - 客户端收到 80 字节数据后,于是接收窗口往右移动 80 字节,
RCV.NXT
也就指向 321,这意味着客户端期望的下一个报文的序列号是 321,接着发送确认报文给服务端。 - 服务端再次发送了 120 字节数据,于是可用窗口耗尽为 0,服务端无法再继续发送数据。
- 客户端收到 120 字节的数据后,于是接收窗口往右移动 120 字节,
RCV.NXT
也就指向 441,接着发送确认报文给服务端。 - 服务端收到对 80 字节数据的确认报文后,
SND.UNA
指针往右偏移后指向 321,于是可用窗口Usable
增大到 80。 - 服务端收到对 120 字节数据的确认报文后,
SND.UNA
指针往右偏移后指向 441,于是可用窗口Usable
增大到 200。 - 服务端可以继续发送了,于是发送了 160 字节的数据后,
SND.NXT
指向 601,于是可用窗口Usable
减少到 40。 - 客户端收到 160 字节后,接收窗口往右移动了 160 字节,
RCV.NXT
也就是指向了 601,接着发送确认报文给服务端。 - 服务端收到对 160 字节数据的确认报文后,发送窗口往右移动了 160 字节,于是
SND.UNA
指针偏移了 160 后指向 601,可用窗口Usable
也就增大至了 200
操作系统缓冲区和滑动窗口
前面的流量控制例子,我们假定了发送窗口和接收窗口是不变的,但是实际上,发送窗口和接收窗口中所存放的字节数,都是放在操作系统内存缓冲区中的,而操作系统的缓冲区,会被操作系统调整。
当应用进程没办法及时读取缓冲区的内容时,也会对我们的缓冲区造成影响。
当应用程序没有及时读取缓存时,发送窗口和接收窗口的变化。
考虑以下场景:
- 客户端作为发送方,服务端作为接收方,发送窗口和接收窗口初始大小为
360
; - 服务端非常的繁忙,当收到客户端的数据时,应用层不能及时读取数据。
根据上图的流量控制,说明下每个过程:
- 客户端发送 140 字节数据后,可用窗口变为 220 (360 - 140)。
- 服务端收到 140 字节数据,但是服务端非常繁忙,应用进程只读取了 40 个字节,还有 100 字节占用着缓冲区,于是接收窗口收缩到了 260 (360 - 100),最后发送确认信息时,将窗口大小通告给客户端。
- 客户端收到确认和窗口通告报文后,发送窗口减少为 260。
- 客户端发送 180 字节数据,此时可用窗口减少到 80。
- 服务端收到 180 字节数据,但是应用程序没有读取任何数据,这 180 字节直接就留在了缓冲区,于是接收窗口收缩到了 80 (260 - 180),并在发送确认信息时,通过窗口大小给客户端。
- 客户端收到确认和窗口通告报文后,发送窗口减少为 80。
- 客户端发送 80 字节数据后,可用窗口耗尽。
- 服务端收到 80 字节数据,但是应用程序依然没有读取任何数据,这 80 字节留在了缓冲区,于是接收窗口收缩到了 0,并在发送确认信息时,通过窗口大小给客户端。
- 客户端收到确认和窗口通告报文后,发送窗口减少为 0。
可见最后窗口都收缩为 0 了,也就是发生了窗口关闭。当发送方可用窗口变为 0 时,发送方实际上会定时发送窗口探测报文,以便知道接收方的窗口是否发生了改变。
当服务端系统资源非常紧张的时候,操作系统可能会直接减少了接收缓冲区大小,这时应用程序又无法及时读取缓存数据,那么这时候就有严重的事情发生了,会出现数据包丢失的现象。
说明下每个过程:
- 客户端发送 140 字节的数据,于是可用窗口减少到了 220。
- 服务端因为现在非常的繁忙,操作系统于是就把接收缓存减少了 120 字节,当收到 140 字节数据后,又因为应用程序没有读取任何数据,所以 140 字节留在了缓冲区中,于是接收窗口大小从 360 收缩成了 100,最后发送确认信息时,通告窗口大小给对方。
- 此时客户端因为还没有收到服务端的通告窗口报文,所以不知道此时接收窗口收缩成了 100,客户端只会看自己的可用窗口还有 220,所以客户端就发送了 180 字节数据,于是可用窗口减少到 40。
- 服务端收到了 180 字节数据时,发现数据大小超过了接收窗口的大小,于是就把数据包丢失了。
- 客户端收到第 2 步时,服务端发送的确认报文和通告窗口报文,尝试减少发送窗口到 100,把窗口的右端向左收缩了 80,此时可用窗口的大小就会出现诡异的负值。
所以,如果发生了先减少缓存,再收缩窗口,就会出现丢包的现象。
为了防止这种情况发生,TCP 规定是不允许同时减少缓存又收缩窗口的,而是采用先收缩窗口,过段时间再减少缓存,这样就可以避免了丢包情况
窗口关闭
TCP 通过让接收方指明希望从发送方接收的数据大小(窗口大小)来进行流量控制。
如果窗口大小为 0 时,就会阻止发送方给接收方传递数据,直到窗口变为非 0 为止,这就是窗口关闭。
窗口关闭和死锁
接收方向发送方通告窗口大小时,是通过 ACK
报文来通告的。
那么,当发生窗口关闭时,接收方处理完数据后,会向发送方通告一个窗口非 0 的 ACK 报文,如果这个通告窗口的 ACK 报文在网络中丢失了,会导致发送方一直等待接收方的非 0 窗口通知,接收方也一直等待发送方的数据,如不采取措施,这种相互等待的过程,会造成了死锁的现象。
如何解决死锁
TCP 为每个连接设有一个持续定时器,只要 TCP 连接一方收到对方的零窗口通知,就启动持续计时器。
如果持续计时器超时,就会发送窗口探测 ( Window probe ) 报文,而对方在确认这个探测报文时,给出自己现在的接收窗口大小。
- 如果接收窗口仍然为 0,那么收到这个报文的一方就会重新启动持续计时器;
- 如果接收窗口不是 0,那么死锁的局面就可以被打破了。
窗口探测的次数一般为 3 次,每次大约 30-60 秒(不同的实现可能会不一样)。如果 3 次过后接收窗口还是 0 的话,有的 TCP 实现就会发 RST
报文来中断连接
糊涂窗口综合症
如果接收方太忙了,来不及取走接收窗口里的数据,那么就会导致发送方的发送窗口越来越小。到最后,如果接收方腾出几个字节并告诉发送方现在有几个字节的窗口,而发送方会义无反顾地发送这几个字节,这就是糊涂窗口综合症。
TCP + IP
头有 40
个字节,为了传输那几个字节的数据,要搭上这么大的开销,非常不经济。
糊涂窗口综合症的现象是可以发生在发送方和接收方:
- 接收方可以通告一个小的窗口
- 而发送方可以发送小数据
于是,要解决糊涂窗口综合症,就要同时解决上面两个问题就可以了:
- 让接收方不通告小窗口给发送方
- 让发送方避免发送小数据
接收方如何不通告小窗口
接收方通常的策略如下:
当「窗口大小」小于 min( MSS,缓存空间/2 ) ,也就是小于 MSS 与 1/2 缓存大小中的最小值时,就会向发送方通告窗口为 0
,也就阻止了发送方再发数据过来。
等到接收方处理了一些数据后,窗口大小 >= MSS,或者接收方缓存空间有一半可以使用,就可以把窗口打开让发送方发送数据过来。
发送方如何避免发送小数据
使用 Nagle 算法,该算法的思路是延时处理,只有满足下面两个条件中的任意一个条件,才可以发送数据:
- 条件一:要等到窗口大小 >=
MSS
并且 数据大小 >=MSS
; - 条件二:收到之前发送数据的
ack
回包;
只要上面两个条件都不满足,发送方一直在囤积数据,直到满足上面的发送条件。
Nagle 伪代码如下:
if 有数据要发送 {
if 可用窗口大小 >= MSS and 可发送的数据 >= MSS {
立刻发送MSS大小的数据
} else {
if 有未确认的数据 {
将数据放入缓存等待接收ACK
} else {
立刻发送数据
}
}
}
注意,如果接收方不能满足「不通告小窗口给发送方」,那么即使开了 Nagle 算法,也无法避免糊涂窗口综合症,因为如果对端 ACK 回复很快的话(达到 Nagle 算法的条件二),Nagle 算法就不会拼接太多的数据包,这种情况下依然会有小数据包的传输,网络总体的利用率依然很低。
所以,接收方得满足「不通告小窗口给发送方」+ 发送方开启 Nagle 算法,才能避免糊涂窗口综合症。
Nagle 算法默认是打开的,如果对于一些需要小数据包交互的场景的程序,比如,telnet 或 ssh 这样的交互性比较强的程序,则需要关闭 Nagle 算法。
可以在 Socket 设置 TCP_NODELAY
选项来关闭这个算法(关闭 Nagle 算法没有全局参数,需要根据每个应用自己的特点来关闭)
setsockopt(sock_fd, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int));
3.30 拥塞控制
流量控制是避免「发送方」的数据填满「接收方」的缓存,但是并不知道网络的中发生了什么。
一般来说,计算机网络都处在一个共享的环境。因此也有可能会因为其他主机之间的通信使得网络拥堵。
在网络出现拥堵时,如果继续发送大量数据包,可能会导致数据包时延、丢失等,这时 TCP 就会重传数据,但是一重传就会导致网络的负担更重,于是会导致更大的延迟以及更多的丢包,这个情况就会进入恶性循环被不断地放大
拥塞控制的目的就是避免「发送方」的数据填满整个网络。
拥塞窗口
拥塞窗口 cwnd是发送方维护的一个的状态变量,它会根据网络的拥塞程度动态变化的。
发送窗口 swnd
和接收窗口 rwnd
是约等于的关系,那么由于加入了拥塞窗口的概念后,此时发送窗口的值是swnd = min(cwnd, rwnd),也就是拥塞窗口和接收窗口中的最小值。
拥塞窗口 cwnd
变化的规则:
- 只要网络中没有出现拥塞,
cwnd
就会增大; - 但网络中出现了拥塞,
cwnd
就减少;
如何判断拥塞
只要「发送方」没有在规定时间内接收到 ACK 应答报文,也就是发生了超时重传,就会认为网络出现了拥塞。
拥塞控制算法
拥塞控制主要是四个算法:
- 慢启动
- 拥塞避免
- 拥塞发生
- 快速恢复
慢启动
TCP 在刚建立连接完成后,首先是有个慢启动的过程,这个慢启动的意思就是一点一点的提高发送数据包的数量。
当发送方每收到一个 ACK,拥塞窗口 cwnd 的大小就会加 1。
例如:
这里假定拥塞窗口 cwnd
和发送窗口 swnd
相等:
- 连接建立完成后,一开始初始化
cwnd = 1
,表示可以传一个MSS
大小的数据。 - 当收到一个 ACK 确认应答后,cwnd 增加 1,于是一次能够发送 2 个
- 当收到 2 个的 ACK 确认应答后, cwnd 增加 2,于是就可以比之前多发2 个,所以这一次能够发送 4 个
- 当这 4 个的 ACK 确认到来的时候,每个确认 cwnd 增加 1, 4 个确认 cwnd 增加 4,于是就可以比之前多发 4 个,所以这一次能够发送 8 个。
可以看出慢启动算法,发包的个数是指数性的增长。
慢启动存在阈值:ssthresh
(slow start threshold)状态变量。
- 当
cwnd
<ssthresh
时,使用慢启动算法。 - 当
cwnd
>=ssthresh
时,就会使用「拥塞避免算法」
拥塞避免算法
进入拥塞避免算法后,它的规则是:每当收到一个 ACK 时,cwnd 增加 1/cwnd。
假定 ssthresh
为 8
:
- 当 8 个 ACK 应答确认到来时,每个确认增加 1/8,8 个 ACK 确认 cwnd 一共增加 1,于是这一次能够发送 9 个
MSS
大小的数据,变成了线性增长。
拥塞避免算法就是将原本慢启动算法的指数增长变成了线性增长,还是增长阶段,但是增长速度缓慢了一些。
就这么一直增长着后,网络就会慢慢进入了拥塞的状况了,于是就会出现丢包现象,这时就需要对丢失的数据包进行重传。
当触发了重传机制,也就进入了「拥塞发生算法」
拥塞发生
发生超时重传的拥塞发生算法
当发生了「超时重传」,则就会使用拥塞发生算法。
这个时候,ssthresh 和 cwnd 的值会发生变化:
ssthresh
设为cwnd/2
,cwnd
重置为1
(是恢复为 cwnd 初始化值,我这里假定 cwnd 初始化值 1)
发生快速重传的拥塞发生算法
当接收方发现丢了一个中间包的时候,发送三次前一个包的 ACK,于是发送端就会快速地重传,不必等待超时再重传。
TCP 认为这种情况不严重,因为大部分没丢,只丢了一小部分,则 ssthresh
和 cwnd
变化如下:
cwnd = cwnd/2
,也就是设置为原来的一半;ssthresh = cwnd
;- 进入快速恢复算法
快速恢复
快速重传和快速恢复算法一般同时使用,快速恢复算法是认为,你还能收到 3 个重复 ACK 说明网络也不那么糟糕,所以没有必要像 RTO
超时那么强烈。
正如前面所说,进入快速恢复之前,cwnd
和 ssthresh
已被更新了:
cwnd = cwnd/2
,也就是设置为原来的一半;ssthresh = cwnd
;
然后,进入快速恢复算法如下:
- 拥塞窗口
cwnd = ssthresh + 3
( 3 的意思是确认有 3 个数据包被收到了); - 重传丢失的数据包;
- 如果再收到重复的 ACK,那么 cwnd 增加 1;
- 如果收到新数据的 ACK 后,把 cwnd 设置为第一步中的 ssthresh 的值,原因是该 ACK 确认了新的数据,说明从 duplicated ACK 时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态;
3.31 TCP 的 Keepalive 和 HTTP 的 Keep-Alive
- HTTP 的 Keep-Alive,是由应用层(用户态) 实现的,称为 HTTP 长连接;
- TCP 的 Keepalive,是由 TCP 层(内核态) 实现的,称为 TCP 保活机制;
HTTP 的 Keep-Alive
HTTP 协议采用的是「请求-应答」的模式,也就是客户端发起了请求,服务端才会返回响应,一来一回。
由于 HTTP 是基于 TCP 传输协议实现的,客户端与服务端要进行 HTTP 通信前,需要先建立 TCP 连接,然后客户端发送 HTTP 请求,服务端收到后就返回响应,至此「请求-应答」的模式就完成了,随后就会释放 TCP 连接。
如果每次请求都要经历这样的过程:建立 TCP -> 请求资源 -> 响应资源 -> 释放连接,那么此方式就是 HTTP 短连接,如下图:
但是着这种方式效率太低,一次连接只能请求一次资源。
HTTP 的 Keep-Alive 就是实现了这个功能,可以使用同一个 TCP 连接来发送和接收多个 HTTP 请求/应答,避免了连接建立和释放的开销,这个方法称为 HTTP 长连接。
HTTP 长连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态。
TCP 的 Keepalive
TCP 的 Keepalive 这东西其实就是 TCP 的保活机制。
如果两端的 TCP 连接一直没有数据交互,达到了触发 TCP 保活机制的条件,那么内核里的 TCP 协议栈就会发送探测报文。
- 如果对端程序是正常工作的。当 TCP 保活的探测报文发送给对端, 对端会正常响应,这样 TCP 保活时间会被重置,等待下一个 TCP 保活时间的到来。
- 如果对端主机宕机(注意不是进程崩溃,进程崩溃后操作系统在回收进程资源的时候,会发送 FIN 报文,而主机宕机则是无法感知的,所以需要 TCP 保活机制来探测对方是不是发生了主机宕机),或对端由于其他原因导致报文不可达。当 TCP 保活的探测报文发送给对端后,石沉大海,没有响应,连续几次,达到保活探测次数后,TCP 会报告该 TCP 连接已经死亡。
所以,TCP 保活机制可以在双方没有数据交互的情况,通过探测报文,来确定对方的 TCP 连接是否存活,这个工作是在内核完成的。
注意,应用程序若想使用 TCP 保活机制需要通过 socket 接口设置 SO_KEEPALIVE
选项才能够生效,如果没有设置,那么就无法使用 TCP 保活机制
小结
HTTP 的 Keep-Alive 也叫 HTTP 长连接,该功能是由「应用程序」实现的,可以使得用同一个 TCP 连接来发送和接收多个 HTTP 请求/应答,减少了 HTTP 短连接带来的多次 TCP 连接建立和释放的开销。
TCP 的 Keepalive 也叫 TCP 保活机制,该功能是由「内核」实现的,当客户端和服务端长达一定时间没有进行数据交互时,内核为了确保该连接是否还有效,就会发送探测报文,来检测对方是否还在线,然后来决定是否要关闭该连接。